
- 7. (a) Draw the circuit of differential amplifier. Find the output voltage.
 - (b) Find the V_o of the following circuit:

What is CMRR ? For a given op-amp CMRR = 10^4 and differential mode gain $A_d = 10^5$. What is the common mode gain A_C ? (7) What is CMRR ?

No. of Printed Pages-4

Roll No. .

B. TECH. Ist - Year

SECOND SEMESTER EXAMINATION, 2007-2008

TEC-201 BASIC ELECTRONICS

Time: 3 Hours

Maximum Marks: 100

Note: Question No. 1 compulsory. Attempt any Five questions including Question No. 1. All questions carry equal marks.

1. Answer any 10 parts :

- (a) Identify the components that constitute DC load in a BJT bias circuit.
- Write the expression for voltage gain in Differential amplifier.
- How can the output amplitude of phase shift oscillator be stabilized ?
- What is the need for cascade amplifier?
- What is meant by ripple rejection ratio in voltage (e) regulator ?
- Explain the difference between diffusion and
- transition capacitance.
 Explain the difference between BJT and FET.
 Sketch the output characteristics of CE transistor. Indicate the active, cut-off and saturation region.

- What is pinch-off voltage? Sketch the circuit diagram of a Darlington pair. What is the effect of temperature on zener and avalanche breakdown?
- (1) Explain the difference between intrinsic and extrinsic semiconductors?
- (m) What is Thermal Runway?
- What is thermal Kullway: Calculate the closed loop gain for negative feedback amplifier when $A_v = 100000$ and (20) $\beta = 1/100.$

(7)

TEC-201

TEC-201

Turn Over

2. (a)	Define α and β of a transistor and derive the relationship between them.	(6)			4.	. (a)	What are hybrid parameters ? Derive the h-parameters for a two port network. (7)
(<i>b</i>)	Derive an expression for the dynamic resistance of a diode in forward bias and hence interpret graphically its variation with (i) Current (ii) Temperature.	(6)				(b)	gain of 50. Determine the required values of the external resistors R _i and R _p if (i) A non-inverting amplifier,	
(c)	Explain the formation of potential barrier in a					(4)	(ii) An inverting amplifier is required. (7	,
	p-n junction. Why is silicon preferred to germanium in the manufacturing of					(2)	Realize the all other gates using NAND gate only. (6))
	germanium in the manufacturing of semiconductor device ?)		5.	. (a)	Sketch a <i>npn</i> transistor CE amplifier circuit that uses fixed bias. Include a capacitor coupled	
	Calculate the junction potential for a step graded Germanium p-n junction. It has $N_{\rm p}=103~N_{\rm A}$ and $N_{\rm A}$ corresponds to one atom, per 10^8 Germanium atoms. Assume $n_{\rm i}=2\cdot5x10^{13}/{\rm cm}^3$ and atom density of Ge = $4\cdot4x10^{22}$ atoms /cm³.						signal source and load resistor. Explain the circuit operation. (10)
						(b)	Draw the circuit of the transformer coupled class – A amplifier. Get the expression for the efficiency of class A-amplifier. List the applications. (10)
3. (a) (b)	a Hall voltage V_H in n type germanium semiconductor having majority carrier concentration $N_D=10^{17}/\mathrm{cm^3}$, $d=3$ mm, $E_x=5$ V/cm, $B_Z=0.1$ wb/m², $\mu_n=3800$ cm²/v-s. What is meant by Fermi level in semiconductors. Prove that the Fermi level in intrinsic semiconductor lies in the middle of energy band gap.	(6) (6)		2		. (a)		
							(i) $(110110.000101)_2 = (\dots)_{8}$	
							(ii) (1BE) ₈ = () ₁₆ = () ₂ . (iii) Solve without changing the base :	
						(<i>b</i>)	(432) _s - (124) _e (5)
)	;)		$f(wxyz) = \Sigma m(1,4,8,12,13,15) + d(3,14)$ (5)
		(8)				(c)	Define the following terms :	
							(i) Break-down voltage	
							(ii) Ripple factor	
							(iii) Pinch-off voltage	
							(iv) Drift and diffusion (10)
TEC-2	201 2				т	EC-2	201 3 <i>Turn Op</i>	
120-2	2					L-2	201 3 Turn Ove	1

For More Visit : http://footnotes.in Page 2