For the circuit, as shown in the following, determine the output voltage voif the input voltage $v_i = 1.2 \text{ V}$.

Attempt any two:

 10×2

- (i) Write down characteristics of ideal OP-AMP.
 - What is close loop non inverting amplifier, derive expression for it.
- Convert the following numbers: (b) (i)
 - $(4021.25)_{10} = ()_2$
 - $(101010.10)_{4} = ()_{8}$
 - (iii) $(23.AB)_{16} = ()_2$

(iv) $(111011)_2 = ()_{\text{gray code}}$ (v) $(23.53)_{10} + (23.53)_8 = ()_{10}$

Minimize the following Boolean function and draw its logic diagram using minimum universal gates.

$$(\bar{A}+B)(A+B+C)\bar{D}$$

Explain the construction and working of n- channel enhancement type MOSFET. Also draw its drain and transfer characteristics of the same

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions, the marks assigned to each question is indicated at question itself.

Attempt any four: · 1

5×4

- Define Semiconductor materials on the basis of energy band diagram with example.
- How electron hole pairs are generated. Explain working of different forms of semiconductors.
- Why Si is preferred over Ge for manufacturing of electronics devices. How Semiconductor diode behaves as a switch.
- Explain the effect of temperature on I-V characteristics of p-n junction diode.
- Differentiate between extrinsic and intrinsic semiconductor on the basis of impurity present in them.
- Explain working of Semiconductor diode at different biasing conditions, no bias, forward bias & reverse bias condition.
- Attempt any four:

- Explain full wave bridge rectifier.
- Prove that efficiency of full wave rectifier is 81 %.
- The reverse saturation current of a Silicon diode is 3 nA AT 27 °C. find -
 - Reverse saturation current at 82 °C.
 - Forward current at 82 °C if forward voltage applied is 82 °C.

30331

Sketch V_0 for the circuit shown below. D_1 and D_2 are silicon diodes.

Determine v_0 for network given below.

Explain Voltage Doubler or Voltage Tripler with neat diagram.

Attempt any two:

10×2

[Contd...

- Explain Zener diode, draw its symbol and V-I characteristics.
 - In a Zener Voltage Regulator find the range (ii) of R_I and I_I for load voltage to be constant.

- Lesign a Voltage Regulator that will maintain an output voltage of 20V across a $1K\Omega$ load with an input that will vary between 30 and 50 V. That is, determine the proper value of series Resistance (Rs) and maximum current I_{ZM}.
- (c) Explain Zener Diode applications as shunt regulator.

Attempt any two:

10×2

- Derive relation in between α & β of transistor, also calculate β for given $\alpha = 0.95$.
 - Explain potential divider biasing of transistor.
- (i) Explain working of npn transistor at no bias and (b) active mode condition.
 - (ii) What is close loop non inverting amplifier, derive expression for it.
- The BJT amplifier has $h_{fe} = 100$, $V_{BE} = 0.007V$, (c) I_{CO} = 0. Calculate the value of R_1 and R_C . Such that $I_C = 1 \text{mA}$ and $V_{CE} = 2.5 \text{V}$.

