- 4 Attempt any two of the following :
- 20
- (a) Prove that $B(m, n) = \frac{\lceil m \rceil n}{\lceil m+n \rceil}$; m, n > 0
- (b) Show that $\iiint \frac{dx \, dy \, dz}{\sqrt{a^2 x^2 y^2 z^2}} = \frac{\pi^2 a^3}{8}$, the

integral being extended for all +ve values of the variables for which the expression is real.

(c) Evaluate, by changing order of integration

$$\int_{0}^{2a} \int_{y=\frac{x^2}{a}}^{2a-x} xy \, dx \, dy$$

5 Attempt any two of the following :

20

[6060]

- (a) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = xy + zy + zxshow that ∇u , ∇v , ∇w are coplanar.
- (b) Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{\pi} f'(r)$

vertices (0, 0), (1, 0), (1, 1)

(c) Verify Green's theorem

 $\int_{C} (x^{2}ydx + x^{2}dy)$ where C is the boundary described counter clockwise of triangle with

EE-9916] 4

PER 1D: 9916

TMA-101

Printed Pages : 4

Roll No. 0 9 0 8 0 1 0 1 3 5

B. Tech.

(SEM. I) (ODD SEM.) EXAMINATION, 2009-10

MATHEMATICS - I

Time: 3 Hours]

[Total Marks: 100

20

- 1 Attempt any four of the following :
 - (a) Find the normal form for the matrix

 $A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$

(b) Examine if the following equations are consistent, if consistent, solve them and write the nature of solution

3x+3y+2z=1, x+2y=4, 10y+3z=-2, 2x-3y-z=5.

(c) Find the eigen values and eigen vectors of the

 $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$

EE-9916]

[Contd...

(d) If
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
, find the modal matrix P and

resulting diagonal matrix D of A.

(e) Find the characteristic equation of the matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

and hence evaluate A-1

- (f) Prove that characteristic roots of unity matrix are of unit modulus.
- 2 Attempt any four of the following :

(a) If
$$y = (x^2 - 1)^n$$
, use Leibnitze's theorem to show that
$$(1 - x^2)y_{n+2} - 2xy_{n+1} + n(n+1)y_n = 0$$

(b) If
$$u = \sin^{-1} \left(\frac{x + 2y + 3z}{\sqrt{x^8 + y^8 + z^8}} \right)$$
, show that $xu_x + yu_y + zu_z = -3\tan u$.

EE-9916]

[Contd...

(c) If
$$u = f(y-z, z-x, x-y)$$
, prove that
$$u_x + u_y + u_z = 0$$

Expand x^y in powers of (x-1) and (y-1).

(e) If
$$u = x^2 \tan^{-1} \left(\frac{y}{x} \right) - y^2 \tan^{-1} \left(\frac{x}{y} \right)$$
 evaluate

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}}$$

(f) If $u = x^2 + y^2 + z^2$; v = x + y + z, w = xy + yz + zx. Prove that Jacobians of (u, v, y) w.r.t. x, y, z, vanishes identically.

3 Attempt any two of the following :

- (a) In estimating cost of a pile of bricks measured as 6 m × 50 m × 4 m the tape is stretched 1% beyond the standard length. If the count is 12 bricks in 1 m³ and bricks cost Rs. 100 per 1000, find the approximate error in cost.
- (b) Find the volume of the largest parallelopiped that can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(c) Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 4$, using Lagrange's multipliers method.

EE-9916]

3

[Contd...