15

Roll No. ..

B. E./B. Tech. (Fifth Semester) EXAMINATION, 2006-07

(Computer Science & Engg.)

· DISCRETE STRUCTURE

Time : Three Hours]

()3

[Maximum Marks: 100

. Note : Attempt any five questions.

- 1. (a) Define relation and function with a suitable example. Explain the properties of a relation.
 - (b) Define composition, identity and inverse functions. Also give the definitions of Injections, Surjections and Bijections functions.
- 2. (a) Define Mathematical Induction. Use Induction to show that: 10 $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- (b) Write the postulate on binary operations. Also define the condition for a set to be semigroup, monoid and group.
- 3. (a) Define Homomorphism and Isomorphism of groups with a suitable example. 10

P. T. O.

For More Visit : http://footnotes.in

Page 1

[2]

- (b) Minimize the following expression using truth table or map technique:
 - (i) $f = AB\overline{C} + \overline{A}B\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$
 - (ii) Σm (0, 2, 8, 12, 13)
- 4. (a) Define Automata. What are the tuples (parts) of Finite State Automata ? Draw the automata for a (b b)* b c.
 - (b) Define Lattices. Differentiate between bounded, complemented and distributive lattice with examples.
- 5. (a) Define Tautologies and Truth tables. Write the most basic logical laws.
 - (b) Define all the rules of Inferences and their Tautological forms.
- 6. (a) Explain Polya's Counting theorem with an example. 10
- (b) Define recurrence relation. Solve the following recurrence relations by substitution:
 - (i) $a_n = a_{n-1} + f(n)$ for $n \ge 1$
 - (ii) $a_n = a_{n-1} + \frac{1}{n(n+1)}$ where $a_0 = 1$.
- 7. Write short notes on any four of the following:
 - (a) Rings and fields
 - (b) Logic gates
 - (c) Pigeonhole principle
 - (d) Posets
 - (e) Fallacy with example

P-2102